Термопластичного эластомера тэп tpe sebs
Термопластичного эластомера тэп tpe sebs
марки общего назначения (General). Эти термоэластопласты используются для производства:
Термопластичного эластомера тэп tpe sebs
Компания ОЛЕНТА специализируется на продаже полимерной продукции. У нас Вы сможете приобрести термопластичные эластомеры высокого качества. Вы ищете материал с высокой адгезией, наиболее подходящий для конкретных задач? Прежде чем купить термоэластопласт, свяжитесь с нашими специалистами и получите подробную консультацию. Специалисты ОЛЕНТА в состоянии разработать технологический процесс, учитывающий особенности именно Вашего производства.Термоэластопласты ТЭП/TPE-V производства компании Hyundai , торговая марка Plasmer.Применение и переработкаТермоэластопласт (ТЭП, TPE, TPE-S) — это полимерный материал, обладающий физическими свойствами вулканизированных резин и характеристиками термопластов. В структуру ТЭП входят две микроскопические фазы. Первая фаза низкомодульная, легко деформирующаяся. Вторая фаза, наоборот, жёсткая — она связывает упруго-эластичные зоны. Термоэластопласт обладает эластичными свойствами резины, а при повышенных температурах размягчается подобно термопластам.Наша компания занимается производством и реализацией стирольных термоэластопластов на основе стирол-этилен-бутилен-стирольного каучука TPE-S (SEBS).Основные преимущества TPE-S (SEBS):
- Мягкость и упругость;
- Сохранение эластичности при понижении температуры;
- Высокая устойчивость к химическим и термическим воздействиям;
- Продолжительный срок эксплуатации;
- Широкая цветовая гамма продукции;
- Безопасность для здоровья;
- Стойкость к воздействию ультрафиолетового излучения и озона;
- Стойкость к воздействию слабых щелочей и кислот;
- Высокая атмосферостойкость;
- Стойкость к переменным нагрузкам;
- Высокая стойкость к усталостным деформациям;
- Низкая остаточная деформация сжатия;
- Широкий диапазон температур эксплуатации изделий (от −50 °С до +110 °С);
- Диапазон твердости от 35 Шор A до 45 Шор D;
- Диапазон плотности от 1.02 до 1.3 г/см 3 .
- в строительстве (оконные и дверные уплотнители, уплотнители алюминиевых профильных систем);
- в автомобильной промышленности (уплотнители, коврики, прокладки, брызговики, молдинги и другие детали интерьера и экстерьера);
- в производстве спортивных принадлежностей;
- в производстве товаров народного потребления (шланги, обувь);
- в производстве электротехнических изделий (кабельная оболочка);
- в бытовой технике (уплотнители бытовой техники, холодильного оборудования);
- в других областях, где требуется качественная замена резины.
Но важнее всего то, что именно свойства ТЭП гарантируют функционирование изделий без потери эксплуатационных свойств в течение долгих лет в условиях воздействия постоянно меняющихся атмосферных факторов (мороз и жара, высокая и низкая влажность и пр.).
Термоэластопласты: новейшие разработки
МатериалыНовые разработки внедряются во многих типах ТЭП. Ниже приводятся краткие сведения о каждой технологии. Перечень распределен по типам ТЭП. Термопластичные стирольные эластомеры (СБС)
СБС распределяются на две общие категории: насыщенные и ненасыщенные полимеры. Ненасыщенные СБС, включая бутадиен-стирольные блоксополимеры и стирол-изопрен-стирольные блоксополимеры, являются материалами с низкой температурой плавления, они более подвержены тепловой деградации, обладают низкой химической устойчивостью и более экономичны. Насыщенные СБС, в основном стирол-этилен-бутилен-стирольные блоксополимеры, обладают высокой температурой плавления, высокой устойчивостью к тепловой деградации и повышенной химической устойчивостью. Последние разработки в области СБС включают очень мягкие составы со свойствами гелей и низкой твердостью по Шору А 5-10. Также недавно введены классы СБС с оптической прозрачностью. Разработаны СБС, вступающие в реакцию как ТПВ, для придания им более высокой памяти формы и характеристик уплотнения, повышенной химической устойчивости и температуры использования. Полимерные смеси ТЭП
Самыми распространенными полимерными смесями ТЭП являются термопластичные полиолефиновые эластомеры (ТПО), являющиеся смесью тройного сополимера этилена, пропилена и диена с полипропиленом. Они используются в коммерческих целях уже несколько лет, но продолжают активное развитие вследствие своей экономичности. Благодаря развитию реакторных олефинов, которые повышают эффективность и, видимо, экономичность, внедряются новые разработки ТПО. Металлоорганическая каталитическая полимеризация олефинов обусловила разработку полимерных молекул с заданными свойствами. Некоторые из них имеют большее сходство с блок сополимерами, благодаря контролю сополимеризации этилена и пропилена с другими диеновыми олефинами. Разработка нового олефинового полимера, включая эластичные полиолефиновые эластомеры (ПОЭ) и полужесткие полиолефиновые пластомеры (ПОП) обусловила возможность появления целого ряда новых продуктов с заданными свойствами, в особенности продуктов ТПО. Термопластичные вулканизаты (ТПВ)
Разработки в области ТПВ продолжают активно развиваться, поэтому темпы роста ТПВ лидируют из всех типов ТЭП. Самый большой объем разработок ТПВ основан на смесях тройного сополимера этилена, пропилена и диена и полипропилена (ДПЭ/ПП).
Для обеспечения улучшенных свойств ТПВ были задействованы последние достижения химии поперечного сшивания. Классы ДПЭ/ПП при многокомпонентном формовании обычно связываются только с олефинами. Этот барьер был преодолен разработкой классов, которые прекрасно связываются с полиамидами, особенно нейлоном 6, а также классов, связывающихся с сополимерами акрилонитрила, бутадиена и стирола (АБС-сополимер), полиэстером и другими техническими термопластами. На рисунке 1 представлена фотография эффективного применения технологии ДПЭ/ПП ТПВ при изготовлении ручки степлера. В последнее время диапазон самых эластичных материалов ДПЭ/ПП ТПВ расширился до 25 А по Шору.
Рис. 1. Мягкие ручки степлеров из термопластичного вулканизата.Для более дешевого применения с менее жесткими техническими требованиями внедрены ТПВ (r-ТПВ) на основе вторично используемых материалов, где каучуковой фазой является поперечно сшитый переработанный каучук. В каучуковой фазе используется, как правило, натуральный или стирол-бутадиеновый каучук, поэтому верхняя предельная температура использования материала совпадают с предельными температурами натурального и стирол-бутадиенового каучука. Недавно также внедрено несколько новых типов ТПВ, включая ТПВ с фазой силоксанового каучука. Он называется термопластичный силиконовый вулканизат (ТПSiВ). Этот мягкий, бархатистый на ощупь материал может использоваться при постоянной температуре 140 – 150ºС.
Хотя уже были внедрены материалы ТПВ с более высокой водной стойкостью, такие как нитрильный каучук (БНК), в соединении БНК/ПП ТПВ с фазой нитрильного каучука в ПП, их использование ограничивалось максимальной температурой 150ºС или практическим пределом 125ºС. Новые ТПВ с высокой водной стойкостью и повышенным температурным пределом 177ºС внедрены с фазой акрилатного каучука (AEM) и фазой технического термопласта. Они обозначаются как AEM ТПВ. Термопластичные полеуретаны (ТПУ)
Блоксополимеры ТПУ являются самыми первыми продуктами ТЭП, получившими коммерческое применение. Продолжают внедряться новые разработки. Последние коммерческие разработки ТПУ обладают повышенной термостойкостью. Внедрены также новые классы с повышенной мягкостью до 20 по Шору А. Сополиэфир ТПР (COPE)
Сополиэфиры COPE остаются важным техническим классом ТЭП, который также получает все большее коммерческое развитие. Внедряются новые классы COPE, удовлетворяющие специфические технические требования. Важно отметить, что в последнее время внедряются классы с повышенной эластичностью и сопротивляемостью усталости при деформациях. Свойства
ТЭП обладают теми же основными свойствами, что и термореактивные резины (натуральная резина, неопреновая резина, резина ДПЭ и т.д.). ТЭП и термореактивные резины классифицируются по своей способности выдерживать температуры и сопротивляться углеводородным жидкостям (масла, гидросмеси, топливо и т.д.) Данные свойства в целом представлены на диаграмме, где указаны диапазоны свойств ТЭП или резины. Эти новые разработки ТЭП представлены на рисунке 2 различными классами ТЭП, а на рисунке 3 представлены термореактивные резины.
Рис. 2. Температурная устойчивость ТЭП к действию масел.
Рис. 3. Температурная устойчивость термореактивных резин к действию масел.Данные классы ТЭП классифицируются эксплуатационными характеристиками, самой значимой из которых является твердость или эластичность. Твердость обычно обозначается поШору А или Шору Д. Приблизительный коммерчески доступный диапазон твердости для разных ТЭП указан на рисунке 4. Расширенный диапазон твердости для нескольких классов выделен цветом.
Рис. 4. Диапазон твердости для различных классов ТЭП.Стоимость ТЭП продукции зависит от нескольких факторов, включая экономичность переработки пластмасс и стоимость материала. Относительная приоритетность различных классов в зависимости от температур/устойчивости к действию масел представлена на рисунке 5; новейшие классы ТЭП выделены цветом.
Рис. 5. Сравнение зависимости стоимости и эксплуатационных характеристик классов ТЭП. Применение
Эксплуатационные характеристики различных классов ТЭП позволяют использовать их на коммерческой основе в большинстве областей промышленности. Последние разработки ТПВ и ТПSiВ – это материалы с высокой устойчивостью к действию масел, которые удовлетворяют температурным требованиям для целого ряда технических применений, таких как уплотнители под капотом двигателя автомобиля, защитные кожухи и шланги
Рис. 6. Мягкие ручки из сополимера этилена-пропилен-диена и полипропилена (ДПЭ/ПП ТПВ) для кухонных мерных чашек и ложекCOPE с меньшей твердостью и повышенной динамической эластичностью является предпочтительным материалом для продукции повышенной эластичности, такой как автомобильные колодки. Мягкость материалов ДПЭ/ПП ТПВ определяет их применение в качестве держателей и ручек бытовых предметов, включая инструменты и посуду. Посуда требует соблюдения соответствия нормам по контактам с пищевыми продуктами, поэтому в коммерческом использовании находятся особые ТПВ, которые соответствуют требованиям для бытовой посуды и прокладок для пищевых контейнеров. На рисунке 6 представлен набор кухонных бытовых предметов с цветными ТПВ ручками.
Последние полиолефиновые эластомеры ПОЭ и ПОП открыли новые возможности использования в крупномасштабных прикладных системах и в качестве компонентов ТЭП. Некоторые из них окажутся полезными для автомобильных интерьеров и других мягких эластичных поверхностей, где будет применяться состав из поливинилхлорида.
Новые составы R-TPE являются очень экономичными и приспособлены для использования при низком сопротивлении действию масел и термоустойчивости: автомобильные брызговики, ограждения площадок, коврики при входе и шумопоглощающие прокладки. Благодаря своей экономичности, они заменили защитные покрытия из пластифицированного каучука.Последние разработки в области термоэластопластов (ТЭП) обусловили значительное совершенствование и расширение эксплуатационных характеристик. Усовершенствования преодолели некоторые ограничения использования ТЭП для технического применения с новыми ТПВ и ТПSiВ . Мягкие материалы могут производиться из внедренных разработок СБС или мягких ТПВ. Качество поверхностей интерьеров автомобилей и, возможно, наружных компонентов значительно улучшится благодаря применению металлоценовых олифеинов с низкой твердостью, ПОЭ, и полужестких ПОП. Эти материалы также окажутся полезными как сырье для производителей, разрабатывающих специализированные ТЭП для различных ТЭП классов. Мягкие и устойчивые к динамическому изгибу COPE позволят усовершенствовать автомобильные колодки и соответствующие технические устройства. Наконец, в качестве альтернативы пластифицированному каучуку и термопластичной резине, появятся экономичные, простые в производстве R-TPE на основе продуктов вторичной переработки.
Минусы: Высокая себестоимость изготовления подошвы, необходимость использования очень дорогостоящего оборудования и специальных пресс-форм для каждого размера делает этот материал не очень популярным у производителя, либо фабрикант уменьшает себестоимость товара за счёт очень дешевых материалов верха, как в случае с кедами. Не каждый покупатель поймёт, почему кеды из натуральной кожи высокого качества должны стоить дороже модельных туфель, но именно так и должно быть. У материала не очень хорошие теплоизоляционные характеристики, поэтому зимнюю обувь на такой подошве можно делать, но только добавив толщину.